

NAVAl POSTGRADUATE SCHOOl
Monterey , California

THESIS

INVESTIGATION INTO EFFICIENT CONVERSION
METHODS BETWEEN RESIDUE AND BINARY SYSTEMS

by

David E. Gilbert

September 1991

Thesis Advisor: Chyan Yang

Approved for public release; distribution is unlimited

T260802

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

1a REPORT SECURITY CLASSIFICATION 1 b. RESTRICTIVE MARKINGS

UNCLASSIFIED
2a . SECURITY CLASSIFICATION AUTHORITY 3 . DISTRIBUTION I AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION I DOWNGRADING SCHEDULE distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) I 5 MONITORING ORGANIZATION REPORT NUMBER(S)
I

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

Naval Postgraduate School EC Naval Postgraduate School
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

Sa. NAME OF FUNDING I SPONSORING 8b . OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO. NO. ACCESSION NO.

1 1. TITLE (Include Security Classification)
INVESTIGATION INTO EFFICIENT CONVERSION METHODS BETWEEN RESIDUE AND BINARY SYSTEMS

12. PERSONAL AUTHOR(S)

GILBERT, David E.
1 3a . TYPE OF REPORT r 3b TIME COVERED r4. DATE OF REPORT (Year, Month, Day) r 5 PAGE COUNT

Master's Thesis FROM TO Seotember 1991 56
16 SUPPLEMENTARY NOTATION The views expressed in this thesis are those of the author and do
not reflect the official policy or position of the Department of Defense or the US
Government.

17 COSATI CODES 18 SUBJECT TERMS (Contmue on reverse If necessary and 1dentify by block number)

FIELD GROUP SUB-GROUP residue number systems; VLSI; ROM; programmable logic
array

19 ABSTRACT (Contmue on reverse If necessary and 1dent1fy by block number)

Residue number systems (RNS) can efficiently perform addition, substraction, and
multiplication in a parallel and fault tolerant manner. Because of this, they hold
significant promise for use in digital signal processing, where high speed arithmetic op-
erators are needed. However, the difficulties in using RNS, such as magnitude comparison
between two RNS values, division, and determining overflow or underflow out of system
range, have prevented more widespread use of these systems. This thesis investigates
traditional methods to perform comparisons and to propose some new ones. Proposals
include residue number system with quotient (RNS-Q), residue number system quotient-on-
demand (RNS-QD), and pipelined conversions from traditional RNS to a mixed radix
representation. These proposals will be compared with traditional methods with
respect to silicon area needed for implementation, speed with which they can be devel-
oped, and VLSI techniques utilized to carry out the design.

20 DISTRIBUTION I AVAILABILITY OF ABSTRACT 21 . ABSTRACT SECURITY CLASSIFICATION

KJ UNCLASSIFIED/UNLIMITED 0 SAME AS RPT 0 OTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b . TELEPHONE (Include Area Code) '22c OFFICE SYMBOL

YANG, Chyan 408-646-2266 EC/Ya
DO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

S/N 0102-LF-014-6603
UNCLASSIFIED

i

Approved for public release; distribution is unlimited

Investigation into Efficient Conversion Methods
Between Residue and Binary Systems

by

David E. Jfilbert
Lieutenant, USN

B.S.E.E., University of South Carolina, 1985

Submitted in partial fulfillment of the
requirements for the degree of

l\1ASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

September, 1991

ABSTRACT

Residue number systems (RNS) can efficiently perform addition, subtraction,

and multiplication in a parallel and fault tolerant manner. Because of this, they hold

significant promise for use in digital signal processing, where high speed arithmetic

operators are needed. However, the difficulties in using RNS, such as magnitude

comparison bet\veen two RNS values, division, and determining overflow or under­

flow out of system range, have prevented more widespread use of these systems. This

thesis investigates traditional methods to perform comparisons and to propose some

new ones. Proposals include residue number system with quotient (RNS-Q), residue

number system quotient-on-demand (RNS-QD), and pipelined conversions from tra­

ditional RNS to a mixed radix representation. These proposals will be compared with

traditional methods with respect to silicon area needed for implementation, speed

with which they can be developed, and VLSI techniques utilized to carry out the

design.

iii

I I {J[)!'

~,....

1, .. / I

C.!

TABLE OF CONTENTS

I. I~TRODUCTIOI"\ .. 1

A. BACKGROUND . 1

B. HISTORY 2

c. BASIC COI\'CEPTS . 4

1. RNS 4

2. :rvloduli Set Choice 5

3. Chinese Remainder Theorem (CRT) 6

4. Mixed Radix Representation 7

5. Redundant Residue Number Systems 8

6. VLSI Overview 10

7. Programmable Logic Arrays (PLA) 11

D. THESIS OVERVIE\V 12

II. Al\ALYSIS 14

A. NAIVE SOLUTION 14

B. PROPOSED ALTERNATIVE SOLUTIONS 16

1. RNS with Quotient 16

2. RNS with Quotient on Demand (RNS-QD) 19

3. Pipelined :Mixed Radix Conversion 21

III. II\1PLEMENTATION 23

A. GETTING STARTED. 23

B. II\1PLEMENTATION PROCESS . 24

1. Initial Test ... 25

2. In- Depth Testing 27

iv

C. DESIGI\' \ .ERIFICATIOt\

I\' . CONCLUSIOt\S

APPENDIX A: C CODE UTILIZED

1. C Code for RNS to Binary Converter

2. C Code for Quotient Table Generation

APPENDIX B: SAl\1PLE EQUATIONS .

1. Output from QLUGEN.C ..

2. Reduced Equations from Espresso .

APPENDIX C: SAl\1PLE RNL FILES .

1. Sample RNL Execution File

2. Sample RNL Simulation Output .

REFERENCES

INITIAL DISTRIBUTION LIST

v

30

32

34

34

36

38

38

39

40

40

41

44

46

LIST OF TABLES

2.1 Illustration of RNS Implementations

3.1 Results of Minimization By Espresso

3.2 In Depth Test Results

Yl

18

29

30

LIST OF FIGURES

2.1 Example of a ROl\1 Based RNS to Binary Converter [Ref. 17] 15

3.1 Comparison of RNS and RNS-QD PLA Implementation . . . 26

Vll

ACKNOWLEDGMENT

I would like to thank the United States Navy for making this unique educational

experience available to me, and all the staff and instructors who have made this a

rewarding tour. Special thanks go to Dr. Yang and Dr. Butler for their help as

ad\·isors and friends. Lastly, but definitely not the least, I would like to thank my

wife, Linda , for putting up with me on a daily basis.

viii

I. INTRODUCTION

A. BACKGROUND

Residue Number Systems (RNS) have been investigated for quite some time for

use in computer arithmetic i1nplen1entations. There have been many stumbling blocks

that have limited, or at times prevented, them from becoming more commonplace in

computer systems. Frequently encountered difficulties are division, sign determina­

tion, detecting underflmv and overflow, and comparing two RNS values. The primary

focus of this thesis is the development of more efficient methods of comparing two

residue numbers.

RNS representations lend themselves best to applications that require frequent

addition, subtraction, and/or multiplication. These operations take advantage of the

carry-free and parallel nature of residue arithmetics. Hence, they are ideally suited

for signal processing techniques [Ref. 1]. They have also been shown to be of potential

value in solving linear equations that are ill-conditioned [Ref. 2]. Researchers have

done substantial work in the areas of optimizing arithmetic manipulations performed

by Rl'\S, but the basic means of comparison has involved a form of table look-up

for a conventional weighted number value [Ref. 3, 4, 5]. Table look-ups tend to

require large amounts of silicon area and are not very efficient in terms of speed of

conversion, thereby making them the primary bottleneck preventing more widespread

use of RNS.

This chapter includes the essential material needed for a basic understanding

of modular /residue mathematics. Section C.6, in this chapter, provides some basic

1

\.LSI design considerations and tradeoffs. It is not intended to be comprehensive,

but should help one to understand the fundamentals.

B. HISTORY

Residue, or modulo, number systems have been identified since approximately

100 A.D. Their discovery has been jointly credited to China's Sun Tzu and the Greek

mathematician Nichomachus [Ref. 2). Credit seems to be most commonly given to

Sun Tzu for a verse he wrote describing a three modulus RNS with prime moduli 3,

5, 7 repeated here:

vVe have things of which we do not know the number

If we count them by threes, the remainder is 2,

If we count them by fives the remainder is 3,

If we count them by sevens the remainder is 2,

How many things are there?

The answer, 23.

The rule stated in the verse has come to be known as the Chinese Remainder Theorem

(CRT).

During the Ming Dynasty (1368AD - 1643AD) Hsin Tai-Wei may have pub­

lished the first proof of the CRT in a verse entitled "Hun Hsin Tiang Bing" (Counting

Soldiers). Hsin Tai-\Vei's verse is as follows:

Three men walk together, their chance of reaching seventy so slight.

Among the five plum trees, twenty-one blossoms did they yield.

Seven sons at midmonth, happily did reunite.

Divide the sum by 105, the answer is revealed.

2

This Yerse reiterates the modulo system with relatively prime moduli {3, 5, 7} and

possessing a dynamic range of 105 (3 * 5 * 7). Euler is credited with the first rigorous

mathematical proof of RNS published in 1734. Gauss also published this theorem and

the overall theory of residue numbers in the nineteenth century in his Disquisitiones

Arithmetical. [Ref. 1]

Although the bulk of the theoretical development of residue number systems had

been completed by the end of the nineteenth century, there had been little practical

use found for them. With the advent of the electronic computer new interest was de­

veloped in RNS methods. There was a flurry of activity after World War II primarily

focused on the error detecting capabilities of the system to make vacuum tube com­

puters more reliable. Fault tolerant and error detection/correction research became

less important when the transistor was invented, which dramatically increased com­

puter reliability. Increased activity in the RNS field was noted in the 50's and 60's,

as attempts were made to use RNS in general-purpose computing machines. The

difficulties encountered in handling sign detection, division, and comparison made

RNS in1plementation undesirable in these machines.

Digital signal processing began to emerge as a significant distinct field of research

m the 1960's, separating it frmn general computing machines. Cheney designed a

digital correlator that was based entirely on residue arithmetic in 1961 [Ref. 6].

Unfortunately, this development did not receive much attention and there was again

a lapse in the intensity of research conducted on residue arithmetics. VLSI (very large

scale integration) rapidly accelerated electronic development in the 1970's. New VLSI

tools created new techniques for system design and gave rise to new problems for DSP

researchers. Traditional methods employed for digital signal processing were not very

modular nor parallel in nature. Modularity and parallelism are two key issues when

considering a VLSI design implementation (discussed in a later section); these two

3

issues brought RNS research back to the surface again in an effort to take advantage

of the modular and parallel characteristics that are inherent to residue arithmetics.

VLSI issues bring us to the present day, where we are still in need of more efficient

methods for comparing two residue numbers.

Throughout the history of residue arithmetic development there are many pe­

riods of inactivity. Periods of disuse have been driven by development of techniques

that were faster than what could be implemented using RNS methods, and lack of

totally efficient implementations of modulo systems. During the eighteenth and nine­

teenth centuries some of the giants in mathematics did extensive work on theoretical

development. The list includes Euler and Gauss. Modern researchers have often

stated that we may be rediscovering facts about RNS that have been lost in time[

Ref. 1). Knuth states, "Perhaps some day highly highly parallel computers will make

simultaneous operations commonplace, so that modular arithmetic will be of signifi­

cant importance in 'real-time' calculations when a quick answer to a single problem

requiring high precision is needed." [Ref. 2) The days of parallel computing are be­

coming more and more commonplace. There is a need for more rapid calculations,

especially in the field of digital signal processing, that can utilize the advantages of

RNS methods. while suffering very little from any of the disadvantages.

C. BASIC CONCEPTS

1. RNS

Residue Number Systems are formed by selecting several relatively prime

moduli. Relatively prime refers to the fact that none of the moduli have any common

factors other than unity i.e., for two distinct moduli mi and mk are relatively prime

if and only if

{1.1)

4

There are a variety of methods available to select relatively prime moduli [Ref. 2].

\Ve are not forced into having to look for special distinct primes of the Mersenne type

or anything else that exotic [Ref. 7]. One easy way to derive a set of three relatively

prime moduli is done by using 2n - 1, 2n, and 2n + 1 as the set. Common sense can

also be a big help in determining if a choice of a moduli set is relatively prime.

Another important fact about Residue Number Systems is that they form

finite or Galois fields. This is significant in that it establishes their inherent error

detecting capabilities. The set Sm = {0, 1, ... , m - 1} together with modulo m

addition and multiplication forms a finite algebra, denoted {Sm, +, * }. If m is prime ,

then the set {Sm, +, *} forms a finite or Galois field. However if m is not prime, then

{Sm , +. *} is a finite ring R(m). Fields are essentially a set of elements in which we

can perform the simple arithmetic operations of addition, subtraction, multiplication,

and division without leaving the set. A finite field is, in the most basic terms, a field

with a finite number of elements [Ref. 8).

Finite rings have a much weaker structure than do fields. One of their

weaknesses is that there is no multiplicative inverse for all ring elements and no

generator exists to generate all the elements of the ring [Ref. 1). Of special interest is

a ring that is formed with a modulus choice of 2n, Obviously a power of two modulus

will not be prime, so all these implementations will be rings. An RNS implementation

can benefit from the choice of an exact power-of-two moduli in that the representation

is an the length of standard words in most computers. For a three moduli set, this

makes the other two choices quite easy, in that 2n, 2n - 1 and 2n + 1 are all relatively

prime to each other.

2. Moduli Set Choice

The choice of the moduli is governed by the range of distinct values one

wishes to represent. The range of the system is determined by the product of the

5

moduli.

Range = A1 = mr * mr-1 * ... * m2 * m1 (1.2)

A system with relatively prime moduli 3, 5, and 7 would have a dynamic range of

105, the product of the moduli. The implications of the dynamic range are that these

are the total number of values that can be uniquely represented by a residue number

system. A moduli set must be chosen such that numbers in the system in which it

is to be used do not typically go out of this range. When an overflow (or underflow)

occurs the resultant RNS representation is an alias of some other value, and cannot

be differentiated from that value. An example of this for the {3, 5, 7} RNS is that

the value of 106 for this system is the same as the value for 1, i.e. (1, 1, 1) and would

be interpreted as the value one if a conversion is performed.

Typically RNS have been made up with 3 or 4 moduli, but this is in no

way meant as a limitation. One helpful hint is that the largest moduli would best

serve the overall system implementation if it is a direct power of two, as explained

before. The choice of a power of .two holds other advantages than just word length;

there is research that shows modulo adders and multipliers can be implemented at

significant savings in terms of area and also gain some speed advantages for direct

power of two implementations [Ref. 9].

Basically the idea is to work indirectly on the 'residues' instead of directly

on some larger integer value. By doing this we can reduce the storage requirements

for intermediate results and take advantage of the rapid addition, subtraction, and

multiplication of these residual values.

3. Chinese Remainder Theorem (CRT)

The Chinese Remainder Theorem (CRT) is the basic building block for all

residue number system development. It is undoubtedly one of the oldest theorems

6

still in use today. :Mathematically, the CRT can be restated by the following theorem

[Ref. 2]:

Theorem 1 Let mb m 2 , ... , mr be positive integers which are relatively prime in pairs

(as previously stated above). Let A1 = mi * m2 * · · · * mr and let a, ub u2, ... , and Ur

be integers. Then, there is exactly one integer u, which satisfies the conditions a ::;

u <a+ m and u = Ujmodulo mj for 1 ::; j ::; r.

The proof of Theorem 1 is as follows:

Proof 1 If u = v(1nodulo mj) for 1 ::; j ::; r, then u- v is a multiple of mj for all j,

so Equation 1.1 implies that u - v is a multiple of m = mi m2 ... mr. This argument

shows that there is at most one solution to a ::; u < a + m. As u runs through the

m distinct values a ::; u < a+ m, the r-tuples (u mod m1, ... , u mod mr) must also

run through m distinct values, since Theorem 1 has at most one solution. But there

are exactly mi m 2 ... mr possible r-tuples {vi ... Vr)such that 0 ::; Vj < mj. Therefore

each r-tuple must occur exactly once, and there must be some value of u for which

(u modmt, ... ,umodmr) = (uJ, ... ,ur)·

The CRT is the starting point for all RNS work, although some other techniques have

been tried.

4. Mixed Radix Representation

Another form of representation for RNS is called the mixed radix repre­

sentation (or system). An advantage of this form of representation is that it is a

weighted format such that comparisons may be performed without further conver­

sion. One method for performing the conversion from RNS to a mixed radix form is

described in the following equations.

VI = UI (modulo mt) = UI (1.3)

7

(1.4)

t '3 (((u3- vi)* c13- v2) * c23](modulo m3) (1.5)

Vr (. . . ((ur- vi)* Cir- V2) * C2r - ''' - Vr - 1) * C(r-l)r(modufo mr) (1.6)

U Vr ffir-1 · · · m1 + · · · + V3 m2 m1 + V2 m1 + V1 (1.7)

These equations describe the conversion process where t he ui's are the original RNS

representation values, the Vi's are the mixed radix values, and U is the fully converted

value to some decimal or binary form. Calculating the conversion constants, Cij 's is

accomplished by Euler 's equation.

(1.8)

It is important to note again that the Vi form of the mixed radix is a

weighted number and may be compared directly to another value. The format of

equations 1.4-1.8 illustrates how each value Vi is dependent on the preceding value,

Vi-I , and all earlier values of v 's. Due to this cascading of dependency on previously

calculated values, conversion into this type of representation lends itself well to a

pipelined form of conversion. Full conversion to the value U is not required if only

a comparison is desired and could be enabled or disabled as necessary. An example

is t hat t he mixed radix form of the numbers (using the moduli set {7, 5, 3}) 35 and

23 are (2, 1, 2) and (1, 2, 2) respectively, while in RNS they would be (0 , 0, 2) and

(2, 3, 2). Looking at the mixed radix form it is obvious which represented number

is larger , but thi s is not true for the RNS representation; in fact the value for 23

··appears" to be larger than the value for 35. Investigation into more detail of the

pipeline implementation will be done in Chapter III.

5. Redundant Residue Nun1her Systems

Redundant residue number systems (RRNS) are defined as residue number

systems wi t b additional redundant moduli. A choice is made of n moduli, called the

8

nonredundant n1oduli as in any residue number system, with an additional r relatively

prime rtdundant moduli. The extra r moduli are not considered in the calculation of

the range 111 of the system. The system's legitimate range remains the product of

the nonredundant 1noduli, as in the equation 1.9.

n

M = IImi (1.9)
i=l

The additional redundant terms form a product to define the illegitimate range as

shown in Equation 1.10.
n+r

R = II T?li (1.10)
i=n+I

The overall number of unique values that can be represented is indicated by

n+r

A1R =II mi (1.11)
i=I

which includes the redundancy R.[Ref. 10]

The following is an example of how a number could be represented using

a RRNS implementation. Using the familiar RNS with moduli {7, 5, 3} the decimal

number 23 is represented by the three-tuple (2, 3, 2). Adding the relatively prime

redundant moduli of { 8, 11} results in two additional terms (7, 1). Putting it all

together we have the five-tuple (2, 3, 2, 7, 1).

Using redundant moduli allows for greater error checking and correction

capabilities, thereby making the overall system more fault tolerant. Watson and

Hastings have done research on RRNS that detect any errors in the residues and

correct one of them [Ref. 10]. There are also algorithms for burst error detection

and correction available for RRNS implementation [Ref. 11]. This capability makes

the implementation desirability of RNS methods even greater when a strong degree

of fault tolerance is required. The RNS with quotient implementation is a form of a

redundant system introduced in Chapter II, only it is not formed using extra moduli.

9

6. VLSI Overview

There are many tradeoffs to be considered in any engineering design pro­

cess. Primary design considerations when undertaking a VLSI (very large scale

integration) design are modularity, regularity, area, and development time. These

are not the only items to consider, but they form the cornerstones for a good design

approach and are in keeping with the spirit of VLSI.

Modularity is a concept that takes into account, to some extent, the ease

of mobility of a functional block within a given overall circuit and also its value in

other circuit implementations. If a VLSI module is "well formed" the interaction it

undergoes with other parts of the circuit can be easily and succinctly characterized.

A highly modular circuit can be thought of as a properly written software subrou­

tine. The subroutine can be embedded or called by a variety of main programs or

other subroutines and only depends on what variables are passed into it and what

variables it must return to the calling program. Likewise, the calling program need

not be concerned with the internal operations of the subroutine, only that it returns

the desired result when needed. A poorly written subroutine would rely on global

constants or variables within a given program, thus making it, in its present form,

highly immobile and therefore not very modular. Modularity of subroutines is basi­

cally the same concept in VLSI design. Primary differences are that the interface in

the circuit design is a physical boundary that must be connected vice the passing of

variables in a subroutine. [Ref. 12)

Regularity in a VLSI design is important to both the speed of development

and also to the modularity. Optimizing each and every functional element in a circuit

may result in a significant savings in total silicon area used and may also yield the

highest speed of operation. The drawback to this approach is the long design time

and the lack of a guarantee of a modular circuit. Using standard cells that have been

10

set up in an on- line library and using an iterative process for interconnection of the

cells to form a functional block generally leads to faster design time and a modular

cell. This is where the cost function AT (area* time delay) must be considered when

deciding on a full custom design or a high degree of regularity [Ref. 13).

Area and time considerations for a VLSI design are fairly closely interlocked

as evidenced from the pre\'ious paragraphs. To accomplish a particular design in

the least amount of space implies a full custom design with every circuit optimized.

Implementation of a circuit in the least amount of time leads one to rely entirely

on library cells for circuit realization. There is also the speed of the circuit to be

considered; it must be fast enough to be compatible with the system that will be using

it. If a full custom circuit enjoys mass production and must perform at the highest

speeds possible, then the time required to develop it may be justified. However, if it

is a limited production circuit without any serious speed requirements or it is a design

prototype to investigate feasibility for implementation, then the quickest development

time is preferable.

7. Programn1able Logic Arrays (PLA)

PLAs are h_ighly regular and modular VLSI structures. They are composed

of an AI\D gate arra)' follmved by an OR gate array. The PLA is a subset of the RO~f

structure [Ref.14). PLAs allow the VLSI designer to implement any combinatorial

logic function that may be characterized by a sum of products (SOP). An example

of a SOP is given in equation 1.12. below.

X= ABCD + ABCD + ABCD (1.12)

One primary difference between a R0~1 and a PLA is that a ROM can implement any

combinatorial function desired given the number of inputs and outputs. The PLA

requires the function to be implemented must be expressed as a SOP. Advantages of

11

using a PLA over a ROM are that there may be a substantial savings in terms of

silicon area used in the implementation of a PLA. Some ROM structure applications

have many unused output functions. The ROM may be thought of as a post office

that maintains mailboxes for all of the people on the mailing list but only has mail for

a small portion of those addressees on any given day. The mail boxes are always there

but only a few are used regularly. Using a ROM to realize 8 functions of 16 variables

requires a 65,536 8-bit word structure [Ref. 15]. This same function may well be

realized at substantial area savings using a PLA and SOP minimization techniques.

The facts outlined above concerning design modularity and regularity cou­

pled with available tools for SOP minimization and PLA realization led to the choice

of PLAs implementation which is investigated in this thesis. The tools used were

espresso, eqntott, mpla, magic and rnl. These tools are all described in "Still :More

Works by the Original Artists" [Ref. 16). After considering other approaches, this

seemed to be the best to minimize the overall development cost and was in keeping

with the regularity advantage of VLSI design.

D. THESIS OVERVIEW

This thesis concentrates on investigating traditional comparison methods and

offering some alternative solutions to this problem. Background work has been pre­

sented to develop RNS basics. Chapter II investigates conventional comparison meth­

ods, proposes new techniques for conversion, and analyzes the different comparison

techniques in order to determine the overall efficiency of each method. Comparison

efficiency is driven by the speed at which this operation can be performed and by

the overall savings offered by the modulo system as compared to current methods.

Conversion is a limiting factor if the values being used require frequent manipulation

in a weighted or conventional format, that makes the operations of division, scaling,

12

and comparison easier to perform. Chapter III concentrates on the implementation

of the alternative methods that have been proposed. This includes the steps taken to

realize the design in a VLSI layout and design verification. Conclusions and recom­

mendations for future study are presented in Chapter IV.

13

II. ANALYSIS

The traditional conversion method was previously alluded to in Chapter I and

is examined in more depth in this chapter. It is to be analyzed in terms of its good

points and drawbacks. Proposed alternatives are introduced and analyzed as far

as what benefits can be deriYed from their implementation. Comparisons are made

between both the new alternative solutions and the conventional method. Design

· tradeoffs between the different methods are also discussed.

A. NAIVE SOLUTION

ROM table look-ups are the most commonly used method for converting an

RNS value to some other form to facilitate comparison. The term "naive solution"

is not meant to imply that designers are naive for choosing this solution to the com­

parison problem. It is used to suggest that this is the most straightforward solution

and is simply implemented. The overall cost function has not been fully evaluated

in considering this alternative, which lies at the root of any VLSI implementation.

There are some valid reasons for utilizing this approach, and they will be examined.

Substantial drawbacks to ROM look-up tables lie in the fact that their size grows

as the dynamic range of the moduli set being used, ROMs are relatively slow devices ,

and typical implementations require the use of multiple ROM tables. A multiple

table look- up is given as an example in Figure 2.1 [Ref. 17]. Once the conversion

has been accomplished, there is still the matter of performing the comparison, which

is handled by traditional comparator circuitry. The circuitry in Figure 2.1 forms as

an intermediate step the mixed radix representation of the residue number. This

could be further optimized by imposing conditions so that when only a comparison is

14

ROM 3

ROM 5

ROM 6 ROM7 0 0 ROM8

16-Bit Adder

Figure 2.1: Example of a ROM Based RNS to Binary Converter [Ref. 17]

15

desired the mixed radix value could be utilized for the comparison and not wait on the

full conversion. Doing this would reduce the time delay required for full conversion

when actually not needed. Full conversion could be completed if the value is actually

required for some external purpose.

B. PROPOSED ALTERNATIVE SOLUTIONS

The following three sections introduce alternatives to the "naive solution." Only

one of them (the RNS-QD method) has been implemented and verified with a VLSI

layout, the other two have been theoretically developed.

1. RNS with Quotient

This alternative uses the traditional RNS implementation with the addi­

tional element of the quotient, of the largest modulus, being part of the system. The

name RNS with quotient (RNS-Q) comes from the fact that this quotient is now part

of the representation. Advantages of this concept are that the quotient of any modu­

lus and its residue form a unique value and are "ordered" in terms of magnitude, thus

allowing direct comparisons to be accomplished. Conversions are only required with

this system when a traditional value is required for output or some other use, but

not to perform comparisons. The comparisons can be accomplished using traditional

methods with "off the shelf" components.

The motivation for using the RNS-Q method is derived from Theorem 2.

This theorem and its proof show the validity of such a representation.

Theoren1 2 Let .Af = mr ... m 2m 1 with mr, ... , m2, and m 1 all relatively prime.

Then, the representation of { i/mj, i mod mr, ... , i mod m 2, i mod mi} is unique for

any i E (0, .Af- 1].

Proof 2 If a #- b and a and b E (0, .Af- 1] uszng an r moduli system with moduli

mr, ... m2, and m 1, with .Af = mr · · · m 2m 1. The only parts of this in doubt are

16

th e afmj and b/m;, because th e rest of the representation are the traditional Rl\·s

and they are unique as a consequence of the CRT. If afmi and b/mi are not unique

representations, which they may well not be, the uniqueness of the remaining portion

of the value preserves the uniqueness of the entire representation. QED.

RNS-Q representation may be thought of as the quotient serving as a redundant value,

one that is not required to ensure uniqueness, but allows for immediate comparison

without conversion. The RNS-Q system also forms a partition or an equivalence class

of the set [0, M - 1] which is called the quotient set M /mi [Ref. 18].

Drawbacks to this implementation are that extra bits are required to retain

the quotient of the largest Inodulus, the system is no longer carry-free, and there is

a potential loss of some of the fault tolerance of the traditional RNS. There will also

be the extra burden of checking for overflow or underflow into or out of the largest

moduli in order to update the quotient properly.

Loss of the carry-free characteristic poses the largest potential problem.

Carry-free loss is due to the fact that whenever any arithmetic operation is performed

on the RNS-Q numbers overflow out of, or underflow into, the largest residue must

be reflected in the qu·otient also. With true RNS there is no requirement to check for

the occurrence of overflow or underflow during normal operations. Traditional RNS

does suffer from an aliasing problem when underflow or overflow occur. Failure to

account for overflow and underflow will result in an invalid quotient. Overflow from

the largest residue indicates that the quotient must be incremented by one, while

underflow implies we must decrement the quotient once.

Table 2.1 outlines an RNS implementation using the relatively prime mod­

uli set {2, 3, 5}. This system possesses a dynamic range of 30 values (0-29), and was

chosen to illustrate some of the different representations that can be made. Shown

17

TABLE 2.1: Illustration of RNS Implementations

z RNS quotient RNS-Q Mixed Radix

rsr3r2 qs qsrsr3r2 V3V2V1

0 0 0 0 0 0000 0 0 0
1 1 1 1 0 0 1 1 1 0 0 1
2 2 2 0 0 0 2 2 0 0 1 0
3 3 0 1 0 0 3 0 1 0 1 1
4 4 1 0 0 0 4 1 0 0 2 0
5 0 2 1 1 1 0 2 1 0 2 1
6 1 0 0 1 1 1 0 0 1 0 0
7 2 1 1 1 1 2 1 1 1 0 1
8 3 2 0 1 1 3 2 0 1 1 0
9 4 0 1 1 1 4 0 1 1 1 1
10 0 1 0 2 2 0 1 0 1 2 0
11 1 2 1 2 2 1 2 1 1 2 1
12 2 0 0 2 2 2 0 0 2 0 0
13 3 1 1 2 2 3 1 1 2 0 1
14 4 2 0 2 2420 2 1 0
15 0 0 1 3 3 0 0 1 2 1 1
16 1 1 0 3 3 1 1 0 2 2 0
17 2 2 1 3 3 2 2 1 2 2 1
18 3 0 0 3 3 3 0 0 3 0 0
19 4 1 1 3 3 4 1 1 3 0 1
20 0 2 0 4 4 0 2 0 3 1 0
21 1 0 1 4 4 1 0 1 3 1 1
22 2 1 0 4 4 2 1 0 3 2 0
23 3 2 1 4 4 3 2 1 3 2 1
24 4 0 0 4 4400 400
25 0 1 1 5 5 0 1 1 4 0 1
26 1 2 0 5 5 1 2 0 4 1 0
27 2 0 1 5 5 2 0 1 4 1 1
28 3 1 0 5 5 3 1 0 4 2 0
29 4 2 1 5 5 4 2 1 4 2 1

18

are the traditional RI\S , the quotients of the largest modulus , RNS- Q, and the mixed

radix representation. It is easy to see that the traditional RNS does not yield a nicely

weighted system of numeric values that we are accustomed to working with. Mixed

radix and RNS-Q are also easily verified as ordered number systems and show that

they may be compared without further manipulation.

It is obvious from Table 2.1 that {4, 2, 1, 0} is greater than {3, 3, 0, 0}.

Our common sense would also tell us that {3, 0, 0} is greater than {2, 1~ 0}, which

is not true in the traditional RNS representation. The RNS-Q entity has the "look

and feel" of of a traditional weighted decimal system (when ordered: q5 , rs, r3, r2).

This is because the quotient carries the most weight, just as a digit in the hundreds

column of a decimal number carries more weight than a digit in the tens column.

The greatest advantage derived from an implementation of the RNS-Q

system is that no conversion is necessary for comparison. Complete conversion can

be accomplished by using a multiplier and an adder to multiply the quotient and its

modulus and sum that result with the associated residue. RNS-Q systems were not

implemented or tested. Implementation was not performed because an overall system

would have to be developed to enable design tradeoffs between other methods.

2. RNS with Quotient on Den1and (RNS-QD)

RNS-QD is based on the principles outlined for the RNS-Q representation

given In the preceding section. The principle in RNS-QD is that the quotient is

looked up when needed, hence the name RNS quotient on demand. Implementation

of this system utilizes the advantages of the RNS-Q representation while maintaining

the inherent strengths of the conventional RNS of being carry-free and fault tolerant .

The loss of these traits were the principle drawbacks to the RNS-Q system.

Look-up tables were considered a disadvantage in the traditional RNS

implementation. This was due to the fact that the table size grew in proportion to

19

the range of the system and were typically implemented in ROM-based structures.

The fact that each Rl\S value was a unique representation made minimization of

the number of sum-of-product terms required for implementation very slight. ROM­

based table look-up systems also were a poor use of available silicon area, as described

in the introduction, unless every memory site available is required. RNS-QD systems

can be implemented so as to overcome some of these drawbacks.

PLA structures can be utilized to make more efficient use of available silicon

real estate, than a similar realization based in ROMs, as long as the function can be

expressed as a sum-of-products. This is true for both the RNS and RNS-QD systems.

The adYantage of the RNS-QD system is that there is substantial minimization that

can be gained from the SOP terms used to define the function. Quotients derived

from any of the moduli are not unique to each value in the range of the system. Each

modulus' quotient set is determined by the product of the other moduli of the system

and forms a partition of the set of all values in the range [Ref 17]. RNS with moduli

set {3 .. 5, 7} has 15 different quotients (0 - 14) for the modulus seven, 35 quotients for

three, and 21 quotients for five in the system range of 105. This also illustrates why

selection of the largest modulus limits the number of carries required in a RNS-Q

implementation.

Looking at the {3, 5, 7} system implementation we should choose 7 as the

modulus of choice for which the quotient table will be generated. This means that

there will be fifteen different quotients required to cover the range 0 - 104 (3 * 5).

Ideally we could hope that the number of logic equations required to implement the

table would reduce to fifteen. Although this is not the case, it is the number of output

terms that we need to complete the quotient index.

20

3. Pipelined Mixed Radix Conversion

Fundamentally a pipeline in a computer system is formed when a large

task is broken up along natural boundaries into sub-tasks. This is most frequently

encountered in the execution of instructions within a central processing unit but, can

also be found in floating point processors and other arithmetic devices. Breaking up

a task into smaller units, called stages, allows for the clock cycle to be shortened such

that all stage outputs are completed at the end of the cycle. Minimum clock cycle

duration is limited to the slowest stage's speed. Cascading the stages together forms

what is referred to as a pipe. Generally speaking the latency from entering the pipe

to exiting the pipe is longer than if the task were not subdivided. The idea is that as

long as there is one instruction entering the pipe every clock cycle theoretically, over

long periods of time, instruction execution will approach one per cycle. [Ref. 19)

Conversion from RNS to mixed radix is an easy task, but the following

example should clear up any doubts and also illustrate the cascading nature of the

conversion. The first step is to calculate the conversion constants Cij for the moduli

set being used. Conversion constants are obtained using Equation 1.3, and, once they

have been calculated for a given moduli, set they never have to be recalculated. Using

the moduli set {5, 3, 2} (with m3 = 5, m 2 = 3, and m 1 = 2), the conversion constants

are: c12 = 2, c13 = 3, and c23 = 2. Proceeding with the rest of the conversion the

RNS value (4, 1, 1) was chosen to be converted. Using Equations 1.4 through 1.7 the

values of the vi's can be obtained from the ui's as follows:

v2 - (u2- vi)c12 mod m 2 = [(1-1) * 2] mod 3 = 0

V3 [((u3- vi)c13- v2) * c23]mod m3 = [((4- 1) * 3- 0) * 2)mod5 = 3

21

The mixed radix representation for the RNS value (4, 1, 1) is (3, 0, 1). A pro­

gram can easily be written to perform this function automatically given the input

moduli set.

Mixed radix conversion lends itself well to this type of implementation, due

to the nature of the conversion each step depends in order on all the preceding steps.

This is evidenced from equations 1.3 to 1. 7 in Chapter I. Systems that perform large

numbers of conversions or that perform many in bursts can benefit from pipelined

structures. There are several stages that can be cascaded to form the pipe and the

length of the pipe is in direct proportion to the number of moduli in the system.

Individual stages are also fairly modular and can be built with good regularity, which

lend themselves to the VLSI environment. The final stage, needed for full conversion,

is not always required if only a comparison is to be done. Enabling or disabling the

final stage could be done to reduce pipeline latency for situations when full conversion

is not required.

22

III. IMPLEMENTATION

Circuitry for the RNS-QD system and the straightforward full conversion look­

up tables were designed and implemented using programmable logic arrays. The

following sections provide a detailed description of the design process.

A. GETTING STARTED

The first steps in any engineering design process are choosing the methods of

implementation that best fit the task. This consisted initially of deciding how best

to generate differing layouts for the purpose of determining which was more efficient.

Generating layouts in VLSI can be extremely time consuming if there is a desire

for a full custom realization. The decision was made to implement the traditional

RNS with full conversion table look-up and the RNS-QD with a quotient look-up

table utilizing PLAs. This was based on the fact that these designs could be easily

accomplished. were very modular, and could be easily contrasted as to which was

n1ore efficient. RJ\S-Q and the pipelined MRC systems are of the type that their

efficiency would be -best demonstrated in a full system implementation and are not

easily compared to the other two solutions.

To realize a PLA design, one must develop the logic equations necessary, mini­

mize the initial equation set, and generate the PLA layout. Several design tools are

available for aiding the designer. Espresso is a design tool for logic equation minimiza­

tion that is part of the magic VLSI computer assisted design (CAD) tool [Ref. 16).

Utilization of espresso greatly reduces the development time required of the designer

and in some cases makes an impossible problem reasonable. The output generated by

espresso is formatted for direct use by the tool mpla. Mpla generates a PLA layout

23

automatically when given the SOP equations that must be realized. Without a tool

such as mpla, the designer could proceed with a PLA design by laying out cells for

basic AND and OR gates. The AND and OR gate cells could be connected together

in the proper sequence so as to realize the same logic equation as done by mpla, but

this is still more time consuming. There was only one tool missing- a tool to generate

the logic equations was needed. The programming environment chosen was C. This

choice was based on the need for rapid prototyping and the simplicity of the programs

that were required.

The first level program written was to verify the structures of RNS and in the

hopes of providing some additional insight into the interplay between the relatively

prime moduli of the system. Further refinement of this entry level program resulted in

versions that created RNS-Q type systems for graphic verification of the uniqueness

theorem introduced in Chapter II. Another program modification yielded mixed radix

representations of RNS, which allowed illustration of the fact that this is an "ordered"

system. Final refinement resulted in two programs to generate logic equations in the

output format required for use by espresso, the VLSI minimization tool to be used.

One program generates equations for a traditional RNS table look-up conversion

(cnvrtres.c), the other for RNS-QD quotient look-up table (qlugen.c), both of which

are contained in Appendix A.

B. IMPLEMENTATION PROCESS

Once the programs were performing properly to enable generation of the logic

equations, the question of what systems should be built arose. The decision was

made to test several implementations that had similar dynamic ranges. This enabled

checking of the hypothesis that by choosing a much larger, largest prime modulus,

i.e. significantly larger than the other moduli, if there were any savings gained by

24

haYing less quotients in the table. The direct power of two moduli was also checked

to investigate savings that had been realized for power of two adders and multipliers

[Ref. 9). Obviously one pitfall to this approach is that the dynamic ranges for two

differing residue number systems will not be identical, but they can be close enough.

The choice of a dynamic range is based on the fact that it is large enough so that

there will be little chance of overflow out of the range. Dynamic range requirements

are a floor setting, or minimum setting, much the same as number of bits needed in

a computer. If a minimum word length needed is eight bits but you have a 16 bit

machine there are advantages to using the larger word size computer, while placing

no limitations on the requirements.

1. Initial Test

RNS sets that were initially evaluated were based on the requirements for

a n1inin1um dynamic range of 105. This allowed for use of the previously referred

to system of relatively prime moduli {3, 5, 7}. Two other systems were chosen for

comparison that had a dynamic range greater than 105. These two systems have

moduli of {3, 5, 8} and {2, 5, 11} with dynamic ranges of 120 and 110 respectively.

The assumption on dynamic range for this implementation is that the system requires

a minimum range of 100. Another point of interest between these three systems is that

they all maintain the san1e number of input (8) and output (4) bits. Maintaining an

equal number of I/0 bits is not necessarily a requirement, but provides for stability

between the systems and, as a result, did not become a point of contention when

the final evaluation was made. Implementation of these systems was done for both

the traditional RNS and the RNS-QD methods to allow contrasting the costs of

realization.

The implementation was realized using PLAs generated from the mini­

mized logic equations from espresso and were fed directly to mpla for VLSI layout.

25

RNS {3, 5, 7}
RNS-QD

RNS {3, 5, 8}
RNS-QD

RNS {2, 5, 11}
RNS-QD

0

3

2

100 200 300

Area In thousands of microns squared

Figure 3.1: Con1parison of RNS and RNS-QD PLA Itnpleinentation

26

l\Iini1nization by espresso resulted in an average reduction of 20 - 30% of the original

logic equations generated by the C program for the RNS-QD system. Virtually no

minin1ization was realized when espresso was used on the logic equations for the tra­

ditional RNS conversion look-up table. This is not surprising when one thinks about

it. The RNS values are unique, and they correspond to unique integer numbers, so

one should not expect to be able to realize any reduction in size. An exception was

discovered when a direct power of two modulus was implemented (except where the

modulus was 2 itself). In this case~ there was some logic minimization encountered ,

but it was still less than what was afforded one in the quotient look-up table. This

n1inimization contributed to reducing the width of the PLA, which in essence is reduc­

ing the number of terms that n1ust be fed to the OR gate plane. The majority of the

minimization that occurred in the quotient look-up table accounted for reductions in

the height of the PLA, or the number of AND gates required for realization. There

was also some reduction in the width of these structures for the RNS-QD format.

Reduction in the height of the PLA has the greatest effect on the overall area, and

the slight reduction in the width for the direct power of two conversion PLA still had

an overall growth in total area from the previous smaller implementation. Figure 3.1

shows the difference~ in overall area of the RNS versus the RNS-QD implementations.

The average savings in area gained by using the RNS-QD system is 30%.

2. In-Depth Testing

After performing this initial test there was a desire to attempt a more in­

teresting problem. The University of Florida has been working on a pipelined mixed

radix converter for the moduli set {101, 109, 113}, and it would be interesting to com­

pare results [Ref.20]. Using the same C programs used to develop the logic equations

seen1ed easily accomplished. Generating the complete set consumed all the available

disk space and thereby shut down the ECE Vax. Looking at the espresso program,

27

also seems to indicate that a maximum of 3000 stack pushes are available before an

error is received. This would have been exceeded by an attempt at minimization of

the logic equations for this system, which are a little over one million.

To investigate some moduli sets with larger dynamic ranges, and to avoid

computation problems, another set of moduli was chosen of approximately ten times

the dynamic range of the first set. The sets of relatively prime moduli are {3, 5, 64},

{7, 11, 16}, and {3, 11, 32}. Use of these moduli sets gives a dynamic range of 960

- 1232. The choice of these sets was driven by the desire to further investigate the

ideas of the "much larger moduli" hypothesis for savings in area, and the power of

two savings that had been realized in adder and multiplier implementations [Ref. 9).

This time the generation of the logic equations was accomplished without

putting any heavy strain on the Vax's available disk space. Minimization by espresso

was fairly time consuming but was completed in about two hours for each set of

moduli. Full PLA implementation was not required as from previous results analysis

of the reduction in the amount of logic equations would be a good indicator of the

size of each PLA. The results are tabulated in Table 3.1. From Table 3.1, it is easy

to see that the most significant reduction came from the implementation of the set

{3, 11, 32}. Earlier work would have lead us to believe, or at least hope for, the

greatest reduction in the set {3, 5, 64}. What Table 3.1 doesn't show is that the

number of output lines for the {3, 5, 64} set is four, while there are six output lines

required for implementation of the {3, 11, 32} representation. Input and output lines

had remained constant throughout the initial test set and were not variables to be

evaluated. Decreasing the number of routing lines required is always welcome, and

may be more significant than the extra area consumed by the larger PLA. The PLA

may even be smaller due to this decreased bandwidth needed for the system with the

largest quotient modulus, thereby needing less quotients as outputs.

28

TABLE 3.1: Results of Minimization By Espresso
1v1oduli # of Original #of Reduced Percent

Sets Equations & Equations Reduction
Dynamic Range

{ 7, 11, 16} 1232 828 33%
{3, 11, 32} 1056 511 52%
{3, 5, 64} 960 555 42%
{3, 13, 29} 1131 831 26%
{3, 1L 31} 1023 556 46%
{3, 11, 34} 1122 556 50%

The actual PLA implementation was done by sending the reduced equation

set to the VLSI tool mpla for automatic realization. The results of this step are

contained in Table 3.2. The dimensions used for height, width, and area are in terms

of the technology being used in microns. Three micron technology is being used, so the

dimensions would be divided by three to obtain the actual dimensions in micrometers

(or by nine micrometers for area), to get the size using one micron technology. Table

3.2 shows that the { 3, 11, 32} implementation uses the least amount of area, as

predicted by the least number of logic equations required to realize this system. The

{3, 5, 64} system is ·only slightly larger than the {3, 11, 32} system and is not as

wide. \Vidth, of a PLA, is an indication of the number of gate delays from input to

output. Although timing analysis was not performed on these circuits, the less gate

transitions required implies the faster the operation of the circuit.

Testing was performed to investigate for power-of-two advantages that

had been discovered previously [Ref. 9]. The implementations tested were for moduli

sets {3, 11, 29}, {3, 11, 31}, {3, 11, 34}, and the previously implemented system

{3, 11, 32}. The dynamic ranges, percent minimization, and area cost statistics are

shown in Tables 3.1 and 3.2. Once again the system {3, 11, 32} holds an advantage

29

TABLE 3.2: In Depth Test Results
:Moduli Height Width Total

Sets Area
{7, 11, 16} 7068 462 3265416
{3, 11, 32} 4388 390 1711320
{3, 5, 64} 4762 382 1819084

{3, 13, 29} 7092 438 3106296
{3, 11, 31} 4794 382 1831308
{3, 11, 34} 4770 398 1898460

over the other implementations, but the {3, 11, 31} system is a close second. Full

implementation of the { 3, 11, 31} system will require much more total area, because

the residue multipliers and adders are much larger [Ref. 9]. It appears that there is

fairly linear growth in the size of the PLA structure away from a direct power-of-two

implementation, in both the positive and minus directions. The choice in this case

would be the system with moduli set {3, 11, 32}, for the best overall savings.

C. DESIGN VERIFICATION

To completely authenticate a design there must be some type of verification

performed to guarantee its validity. Verification for the implementation of the RNS-

QD and traditional RNS PLA layouts was done with the use of a tool called RNL

(Ref. 21]. RNL is a timing logic simulator for digital MOS circuits. It is an event

driven simulator that uses simple resistance-capacitance model of the circuit that has

been extracted from the VLSI layout done in magic. RNL allows for verification of

the device of interest by using timing files and node transitions as inputs. There are

other simulation tools that can be used if a more detailed circuit analysis is desired,

but the goal of this testing is to verify that the for a given set of input vectors the

proper outputs are received.

30

Design verification was performed on the first few PLAs implemented. A sample

R:\L file is contained in Appendix C, that includes timing, clock speeds, inputs , and

outputs received for the system {3, 5, 7}. After ensuring that the logic equation gen­

erating programs functioned properly further design verification was not performed.

Worst case timing analysis was not accomplished, but could also be done using RNL

and the glitch detector [Ref. 21].

31

IV. CONCLUSIONS

Investigation into the usefulness of RNS in computer arithmetics has been going

on for some time. One of the principle drawbacks has been the difficulty in comparing

two residue numbers without conversion to some other form. The traditional method

for comparison is a R0~1 based table look-up; which is relatively slow and uses a

large amount area. Proposals for the use of RNS-Q, RNS-QD, and pipelined MRC

have been presented and analyzed in this paper. These proposals offer savings in area

required and may offer speed advantages.

The PLA implementation of RNS-QD offers a significant savings in terms of sil­

icon area over the straightforward RO.l\1look-up method. The larger moduli concept

did not show an overall decrease in the size of the PLA required for implementation,

but did yield a lower number of output lines, thereby reducing routing requirements

for the circuit. Power-of-two investigation sho~ed that there are some savings to

be gained from implementing these systems, but was not as dramatic as previously

discovered for the power-of-two adders and multipliers. There is still the necessity

for a multiplier and an adder to facilitate full conversion to a conventional weighted

number. If the need for comparisons occur much more frequently than full conver­

sions , the PLA RNS-QD is a more viable method. However, if full conversions are

required in conjunction with virtually every comparison, than this method may not

yield a significant speed advantage over the ROM approach.

RNS-Q systems offer distinct advantages over both the traditional RO.l\1 and

RNS-QD methods in terms of silicon real estate. This is especially true if the num­

ber of comparisons that a given system requires is very high compared to all other

mathematical operations. The drawbacks to this approach are that the system is no

32

longer carry- free and because of this there is some loss in the inherent fault tolerance

of con\·entional RNS. Loss of fault tolerance is most severe, if damage were to occur to

the most significant (largest) modulus of the system, which would essentially disable

the entire circuit.

The choice of the method to be employed must be approached from the view of

what type of system is going to be using it to derive the best advantage. Each of the

methods discussed have their own strong points. Considerations as to what is more

crucial to the system, such as area occupied or speed of operation, will help to choose

the implementation that will best fit the needs of the design.

33

APPENDIX A: C CODE UTILIZED

Enclosed in this appendix are the two C programs used to generate logic equa-

tions utilized for PLA generation.

1. C Code for RNS to Binary Converter

I**

* PROGRAM:

* FUNCTION:

*
*
*
*

AUTHOR:
VERSION:

cnvrtres.c *
Generates logic equations in the *
format necessary to be used by the *
VLSI function "espresso". The output•
derived can be used by "mpla" to *
create a PLA layout for a RNS to *
conventional binary value converter.*
David E. Gilbert *
1.2 *

*
*
*
* DATE (last mod):29 AUG 1991 *
**I

#include <stdio.h>
#include <math.h>

#define TRUE 1
#define FALSE 0

main(argc, argv)
int argc;
char **argv;
{

int mi[S], M, i, j, k, ctr[S], DONE, tmp;
int digit, tmp_div, raise_it;

M=1;
for(i=1; i< argc; i++) { mi[i]=atoi(argv[i]);

M = M*mi[i];
}

mi[4] = M;

I• CALCULATE THE POWERS OF 2 NEEDED FOR NUMBERS OF BITS NEEDED •I

for(i = 1; i <= 4; i++)
{

ctr [i] = 0;
tmp = mi[i];

34

DONE = FALSE;
while (! DONE)
{

trnp = trnp I 2;
ctr[i] ++;
if(trnp == 0) DONE = TRUE ;
}

}

printf("# conversion table look-up for RNS with { %d, %d, %d} \n", mi[1],
mi [2] , mi [3]) ;
printf(".i %d \n", ctr[1] + ctr[2] + ctr[3]);
printf(".o %d \n", ctr[4]);
printf(".phase ");
for(i = 1; i <= ctr[4]; i++) printf("1");
printf("\n \n ");
I* COMPLETION OF BIT CALCULATION PORTION OF PROGRAM *I

I* Calculate the bit fields required and output *I
for(i = 0; i < M; i++)

{

for(k = 1; k <= 4; k++)
{

DONE = FALSE;
raise_it = ctr[k];
tmp = i;

while (! DONE
{

tmp = tmp% mi[k];
raise_it = raise_it- 1;
tmp_div = 1;

for(j = 1; j <= raise_it; j++)
tmp_div = tmp_div * .2;
digit = tmp I tmp_div;
tmp = tmp % tmp_div;
if(digit != 0) printf("1");
else printf("O");
if(raise_it == 0) DONE = TRUE;
}

printf(" ");
}

printf("\n");
}

printf(".e");
}

35

2. C Code for Quotient Table Generation

!**
* PROGRAM NAME: qlugen.c *
* FUNCTION: Generates minterrn equations in the format *
* required by the VLSI tool "espresso" for *
* minimization and then implementation as *
* PLA for an RNS-QD quotient look-up table. *
* VERSION: 1.4 *
* AUTHOR: David E. Gilbert *
* Date Last Changed: 10 Sep 1991 *
**!
#include <stdio.h>
#include <math.h>

#define TRUE 1
#define FALSE 0

main(argc, argv)
int argc;
char **argv;
{

int mi[S], M, i, j, k, ctr[S], biggest, tmp, DONE;
int enter, digit, tmp_div, raise_it;

M=1;
for(i=1; i< argc; i++) { mi[i]=atoi(argv[i]);

M = M*mi [i] ; }
I* Find the largest moduli
biggest = 0;
for(i = 1; i < argc; i++)

{

if(mi[i] > biggest)
}

mi[4] = M I biggest;

biggest= mi[i];

I* CALCULATE THE POWERS OF 2 NEEDED FOR NUMBERS OF BITS NEEDED *I
for(i =

{
1; i <= 4; i ++)

ctr[i] = 0;
tmp = mi [i];
DONE = FALSE;
while (! DONE)
{ tmp = tmp I 2;

ctr [i] ++;
if(tmp == 0) DONE = TRUE; } }/*end of while *I

printf("# conversion table look-up for RNS with { %d, %d, %d} \n", mi[1],
mi[2] , mi [3]) ;
printf(".i
printf(".o

%d \n", ctr [1] + ctr [2] + ctr [3]);
%d \n", ctr[4]);

36

printf (". phase ") ;
for(i = 1; i <= ctr[4] ; i++) printf("1") ;
printf("\n \n ");
I* COMPLETION OF BIT CALCULATION PORTION OF PROGRAM *I

I* Calculate the bit fields required and output *I
mi[4] = biggest; I* This is a temporary fix and should be corrected *I
for(i = 0; i < M; i++)

{

for(k = 1; k <= argc; k++)
{

DONE = FALSE;
raise_it = ctr[k];
tmp = i;
enter = 1;
while(! DONE
{

}

if(k == argc
{

}

if(enter== 1) tmp = tmp I mi[k];
else tmp = tmp% mi[k];
enter ++;

else tmp = tmp% mi[k];
raise_it = raise_it - 1;
tmp_div = 1;

for(j = 1; j <= raise_it; j++)
trnp_div = trnp_div * 2;

digit = tmp I trnp_div;
trnp = trnp % trnp_div;
if(digit != 0) printf("1");
else printf("O");
if(raise_it == 0) DONE = TRUE;

printf(" ");
}

printf("\n");

}

printf (". e");
}

37

APPENDIX B: SAMPLE EQUATIONS
1. Output from QLUGEN.C

conversion table look-up for RNS with { 2, 3, 5 }
. i 7
. o 3
. phase 111
00 00 000 000
01 01 001 000
00 10 010 000
01 00 011 000
00 01 100 000
01 10 000 001
00 00 001 001
01 01 010 001
00 10 011 001
01 00 100 001
00 01 000 010
01 10 001 010
00 00 010 010
01 01 011 010
00 10 100 010
01 00 000 011
00 01 001 011
01 10 010 011
00 00 011 011
01 01 100 011
00 10 000 100
01 00 001 100
00 01 010 100
0 1 10 011 100
00 00 100 100
01 01 000 101
00 10 001 101
01 00 010 101
00 01 011 101
01 10 100 101
. e

38

2. Reduced Equations from Espresso
The following is a listing of the reduced set of equations from the original

moduli set {3, 5, 7} after being processed by espresso. These are the equations that
would be used to generate the quotient look-up table PLA with the VLSI tool mpla.

conversion table look-up for RNS with { 2, 3, 5 }

.i 7

.0 3
#.phase 111
.p 20
0010100 010
0110100 100
0101011 010
0000100 100
0110011 100
0101100 011
0110001 010
0101000 100
000101- 100
0100010 100
0110010 011
0100001 100
000100- 010
001000- 100
0100000 010
000001- 010
000-0-1 001
00-00-1 001
01-0-00 001
010-0-0 001
. e

39

APPENDIX C: SAMPLE RNL FILES
1. Sample RNL Execution File

The following is a listing of an execution file to simulate the RNS-QD
system {2, 3, 5}.

The name of this control file for rnl is: qlu2.1
This is the control file for simulation on a PLA for quotient look-up

LOAD STANDARD LIBRARY ROUTINES
(load "uwstd.l")
(load "uwsim.l")

FILE WHICH WILL LOG THE RESULTS
(log-file "qlu2.rlog")

READ IN THE BINARY NETWORK FILE
(read-network "qlu2")
(sim-init)

DEFINE THE TIME SCALE FOR SIMULATION
(setq incr 10)

DEFINE INPUT VECTOR IF ANY, standard STYLE
(defvec '(bit status input_l input_2 input_3 input_4 input_S input_6 input_7))
(defvec '(bit output output_l output_2 output_3))

DEFINE INPUT VECTOR IF ANY, SINGLE INDEX STYLE

DEFINE INPUT VECTOR IF ANY, double index STYLE

STANDARD REPORT FORMAT DEFINITION.
(def-report '("response= " clka clkabar (vee output) (vee status)))

PLOTFILE SPECIFIED
openplot "qlu2.beh"

LOGIC ANALYZER STYLE OUTPUT FORMAT SELECTION.
(setq !analyze t)
(wr-format)

GLITCH DETECTOR SELECTION.

NODE TRANSIENTS REPORT DEFINITION.
(chflag '(output_l output_2 output_3))

TRIGGER CONDITION SET-UP

40

ADDITIONAL SIMULATION SET-UP COMMAND LINES .
(printf "The simulation starts now ... \n")

SPECIFICATION OF A TIME/BASENAME FILE FOR INCLUSION .
(load "qlu2.time")

ADDITIONAL WRAP-UP COMMAND LINES.
(printf "simulation completed ... check file *.rlog for results . \n")
exit

GEN-CONTROL COMPLETED.

2. San1ple RNL Sin1ulation Output

62 nodes, transistors: enh=157 intrinsic=O p-chan=30 dep=O low-power=O pullup=O resistor=O

Report format of logic analyzer style output
time clka clkabar output status

The simulation starts now ...
output_! = 1 ~ 0
output_2 = 1 ~ 0
output_3 = 1 ~ 0
1 0 0 111 0000000
output_! = 0 C 0.5
2 1 0 011 0000000
output_3 = 0 ~ 0.2
output_2 = 0 C 0.2
output_2 = 1 ~ 0.9
output_3 = 1 ~ 0.9
3 0 0 011 0010101
output_! = 1 ~ 0.2
4 1 0 111 0010101
output_3 = 0 ~ 0.4
output_2 = 0 ~ 0.4
output_!= 0 ~ 0.7
5 0 0 000 0001001
output_3 = 1 ~ 0.8
output_2 = 1 ~ 0.9
6 1 0 011 0001001
output_2 = 0 ~ 0.6
7 0 0 001 0000100
8 1 0 001 0000100
output_3 = 0 ~ 0.3
output_2 = 1 ~ 0.4
9 0 0 010 0001000
output_2 = 0 ~ 0.5
output_! = 1 ~ 0.9
10 1 0 100 0001000
output_2 = 1 ~ 0.8
11 0 0 110 1000100

41

output_ 1 = 0 ~ 0 . 6
output_2 0 ~ 0 . 6
output_2 = 1 ~ 0.9
output_1 = 1 ~ 0.9
12 1 0 110 1000100
output_1 = 0 ~ 0.7
output_2 = 0 ~ 0.9
13 0 0 000 0000101
output_3 = 1 ~ 0.9
output_1 = 1 ~ 0.9
14 1 0 101 0000101
15 0 0 101 0101000
output_1 = 0 ~ 0.5
16 1 0 001 0101000
output_3 = 0 ~ 0.3
output_3 = 1 ~ 0.9
17 0 0 001 0010000
18 1 0 001 0010000
output_1 = 1 ~ 0.9
19 0 0 101 0011001
output_2 = 1 ~ 0.2
20 1 0 111 0011001
output_3 = 0 ~ 0.4
output_1 = 0 ~ 0.6
21 0 0 010 0010100
output_2 = 0 ~ 0.6
22 1 0 000 0010100
output_3 = 1 ~ 0 . 4
output_2 = 1 ~ 0.4
23 0 0 011 0000001
output_2 = 0 ~ 0.5

output_3 0 ~ 0.6
output_3 = 1 ~ 0.8
output_2 1 ~ 0.9
24 1 0 011 0000001
output_1 = 1 ~ 0.9
25 0 0 111 0010001
26 1 0 111 0010001
output_3 0 ~ 0.4
output_2 = 0 ~ 0.4
output_2 = 1 ~ 0.9
27 0 0 110 0011000
28 1 0 110 0011000
output_1 = 0 ~ 0.3
output_2 0 ~ 0.3
output_3 = 1 ~ 0 . 4
output_1 1 ~ 0 . 4
29 0 0 101 0100101
output_1 = 0 ~ 0.6

output_3 0 ~ 0.6
output_3 = 1 ~ 0.8

42

output_2 = 1 ~ 0.9
output_1 = 1 ~ 0.9
30 1 0 111 0100101
output_2 = 0 ~ 0.5
output_1 = 0 ~ 0.7
31 0 0 001 1001001
output_2 = 1 ~ 0.9
output_1 = 1 ~ 0.9
32 1 0 111 1001001
output_2 = 0 ~ 0.6
33 0 0 101 1001001
simulation completed ... check file • . rlog for results .

43

REFERENCES

1. Soderstrand, M. A.,and others, Residue Number System Arithmetic, Addison­
Wesley Publishing Company, 1986.

2. Knuth, D. E., The Art of Computer Programming, Addison-Wesley Publishing
Company, 1969.

3. Soderstrand, M. A., "A New Hardware Implementation of Modulo Adders for
Residue Number Systems," Proceedings of the 26th Midwest Symposium on Cir­
cuits and Systems, pp. 412-415, 1983.

4. Taylor, F. J., "Large Moduli Multipliers for Signal Processing," IEEE Transac­
tions on Circuits and Systems, vol. CAS-28, pp. 731-736, July, 1981.

5. Taylor, F. J. and Ramnarayanan, A. S., "An Efficient Residue-to-Decimal Con­
Yerter, '' IEEE Transactions on Circuits and Systems, Vol. CAS-28, pp. 1164-
1169, December, 1981.

6. Cheney, P. W., "A Digital Correlator Based on the Residue Number System,"
IRE Transactions on Electronic Computing, vol. EC-11, pp. 63-70, March,
1961.

7. Golomb, S. W., Shift Register Sequences, Aegean Park Press, Revised Edition,
pp. 225-228, 1982.

8. Lir.. S. and Costello, D. J_, Error Control Coding: Fundamentals and Applica­
tions, Prentice- Hall Inc. , 1983.

9. Yang~ C., Lu, H.-C. , and Gilbert, D. E. , "An Investigation into the Implemen­
tation Costs of Residue and High Radix Arithmetic," paper presented at the
21st International Symposium for Multiple-Valued Logic, Victoria, Canada, 25
May 1991.

10. \Vatson , R. V\7• and Hastings, C. V\7., "Self-Checked Computation Using Residue
Arithmetic," Proceedings of the IEEE, vol. 54, pp. 1920-1931, December, 1966.

11. Yau, S. S. and Liu, Y. C., "Error Correction in Redundant Residue Number
Systems," IEEE Transactions on Computing, vol. C-22, pp. 5-11, January,
1973.

12. \Veste, N.H. E. and Eshraghian, K., Principles of CMOS VLSI Design, Addison­
Wesley Publishing Co., pp. , October, 1985.

13. \Vakerly, J. Digital Design Principles and Practices, Prentice Hall Inc., pp. 556-
564, 1990.

14. Roth , C. H. Jr., Fundamentals of Logic Design, West Publishing Co., 1985.

44

15. Scott , \\'. S. and others , "1986 VLSI Tools: Still More Works by the Origi­
nal Artists," Report No. UCB/CSD, University of California, pp. 91 - 142,
December 1985.

16. Bayoumi, M. A., Jullien, G. A., and Miller, W. C., "Models for VLSI Imple­
mentation of Residue Number System Arithmetic Modules," Proceedings of the
6th Symposium on Computer Arithmetic, pp. 174-182, 1983.

17. Soderstrand, :tvl. A., Vernia, C., and Chang, J., "An Improved Residue Num­
ber System Digital-to-Analog Converter," IEEE Transactions on Circuits and
Systems, vol. CAS-30, pp. 903-907, December, 1983.

18. Lipschutz, S., Finite Mathematics, McGraw-Hill Book Company, pp. 58-65,
1966.

19. Hennessey, J. L. and Patterson, D. A., Computer Architecture: A Quantitative
Approach, Morgan Kaufmann Publishers Inc.., pp. 251-341, 1990.

20. Telephone conversation between Barry Karsch, Naval Air Development Center,
\Varminster PA., and the author, 12 August 1991.

21. N\V Laboratory for Integrated Systems, Report #88-09-01, VLSI Design Tools
J\1anual, Department of Computer Science, Section 6.3 pp. 1-32, 1 September
1988.

45

IN ITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 52
Naval Postgraduate School
Monterey, CA 93943-5002

3. Chairman, Code EC
Department of Electrical and
Computer Engineering
Naval Postgraduate School
!-.1onterey, CA 93943-5000

4. Professor Chyan Yang, Code EC/Ya
Department of Electrical and
Computer Engineering
Naval Postgraduate School
l\lonterey, CA 93943-5000

5. Professor Jon T. Butler, Code EC/Bu
Department of Electrical and
Computer Engineering
I\ a val Postgraduate School
l\lonterey, CA 93943-5000

6. Lt. David E. Gilbert
2-14 Overholt Drive
Virginia Beach, VA 23462

7. Dr. George Abraham, Code 1005
Office of Research and Technology
Naval Research Laboratories
4555 Overlook Ave., N.vV.
\Vashington, DC 20375

46

No. of Copies

2

2

1

2

1

1

1

8. Dr . Robert Williams 1
Naval Air Development Center , Code 5005
Warminster, PA 18974-5000

9. Dr. James Gault 1
U.S. Army Research Office
P.O. Box 12211
Research Triangle Park , NC 27709

10. C. Lee Giles 1
AFOSR, Bldg. 410
Bolling, AFB , DC 20332

11. Dr. Andre van Til borg 1
Office of Naval Research
Code 1133
800 N. Quincy Str.
Arlington, VA 22217-5000

12. Dr. Clifford La.u 1
Office of Naval Research
1030 E. Green Str.
Pasadena, CA 91106-2485

47

DUDLEY KNOX LIBRARY

lllllll lllllllllllllllllllllllll lllll lllll lllll lll ll llllllllllllllllllll llllllll
3 2768 00033299 3

